Oxidative Coupling of Methane over Calcium Oxide and Gadolinium Oxide Promoted with Sodium Pyrophosphate

RANJANI V. SIRIWARDANE

U.S. Department of Energy, Morgantown Energy Technology Center, P.O. Box 880, Morgantown, West Virginia 26507-0880

Received January 13, 1990; revised January 17, 1990

Calcium oxide and gadolinium oxide, both promoted with sodium pyrophosphate, were found to be active and selective catalysts for the partial oxidation of methane to ethane and ethylene in the presence of molecular oxygen. Yields of C2 hydrocarbons as high as 18 to 19% were obtained over Na₄P₂O₇/CaO, while yields of 17 to 18% were obtained over Na₄P₂O₇/Gd₂O₃ at 1101 K. For $Na_4P_2O_7/CaO$ there was no appreciable change in either C_2 yield or total conversion of CH_4 during the 26-h testing period at 1101 K, while there was a small decrease in the C_2 yield over Na₄P₂O₇/ Gd_2O_3 after 20 h of reaction. Elemental composition of the surface of the catalysts analyzed by Auger electron spectroscopy correlated well with catalytic performance data. Analysis of the elemental composition obtained by Auger electron spectroscopy of the catalysts (1101 K) indicated that a larger portion of sodium was retained on the surface after reaction on catalysts containing Na₄P₂O₇ than on catalysts containing Na₂CO₃. The stability at 1101 K of the catalysts containing $Na_4P_2O_7$ was also greater than that of the catalysts containing Na_2CO_3 . Phosphorus on the surface of $Na_4P_2O_7/CaO$ was found to stabilize the sodium on the surface without being consumed during the reaction. Changes in surface morphology after the reaction were also observed by scanning electron microscopy. X-ray photoelectron spectroscopic (XPS) data indicated that oxygen, sodium, and phosphorus were in similar chemical states on Na₄P₂O₇/CaO and Na₄P₂O₇/Gd₂O₃. Carbide formation was observed on the catalysts after exposure to methane.

INTRODUCTION

Methane is the major component of natural gas and is used primarily as fuel. Transport of natural gas has been a problem in the exploitation of some natural gas resources. It would be extremely valuable to be able to convert methane to more readily manageable or transportable products. However, the high molecular stability of methane makes it difficult to convert into other useful chemicals. Reasonable progress has been made in the past in catalytic oxidative coupling of methane to form higher hydrocarbons which could be used as gasoline precursors. Several oxide catalysts (1-10) promoted with alkali metals

0021-9517/90 \$3.00

have shown to be promising catalysts for this process.

The objective of this work is to obtain further information on the catalytic oxidative coupling of methane. The results of both reactor studies and surface characterization studies on two new promising catalysts, namely, calcium oxide and gadolinium oxide, both promoted with sodium pyrophosphate, which could be used for selective conversion of methane, are reported in the present study.

EXPERIMENTAL

Reactor Studies

CaO was prepared by decomposition of calcium acetate (Aldrich) at 1123 K for 16 to 19 h. Promoted calcium oxide was prepared by adding calcium oxide and sodium pyrophosphate (Alfa) to deionized water and slowly evaporating water while stirring. The resulting thick solid paste was

¹ The U.S. Government's right to retain a nonexclusive, royalty-free license in and to the copyright covering this paper, for governmental purposes, is acknowledged.

heated in an oven at 773 K for 16 h followed by 2 h heating at 973 K. Gadolinium oxide was prepared by heating gadolinium nitrate (Aldrich) in an oven at 1123 K for 16 to 18 h. The resulting gadolinium oxide was promoted with sodium pyrophosphate using a procedure similar to that for calcium oxide. Oxides promoted with sodium carbonate (Fisher) were prepared using a similar procedure that was used for promotion of the catalysts with sodium pyrophosphate.

Each catalyst of 28 to 48 mesh and 0.25 g was placed in a high-purity quartz tube (length = 23.3 cm, diameter = 4.5 mm,heated zone length = 9 cm). Ultrahigh-purity (99.999%) helium, grade zero oxygen gas (99.8%), and methane (99.99%) were obtained from Matheson. The catalytic experiments were carried out in a fixed-bed reactor operated at 1 atm. Reacting gas mixtures of methane and oxygen diluted with helium to achieve a total pressure of 1 atm were introduced after the catalyst was heated to the desired temperature. The gaseous products were analyzed with two gas chromatograph columns (Porapak Q and molecular sieve) which were connected to a thermal conductivity detector. The mole ratios that are used in the discussion of the results in the present paper are the moles of sodium promoter per mole of oxide. The term "yield" used in this paper was obtained by multiplying the selectivity for each carbon-containing product and the total CH₄ conversion (based on mole percentages). The "percentage" of C₂H₄, C₂H₆, CO, and CO_2 shown in the graphs is the percentage "yield" of each compound.

Surface Characterization

The surface area of the catalysts was measured by a volumetric method using nitrogen and krypton gases. Auger electron spectroscopic analysis and scanning Auger mapping analysis of elements on the surface were performed using a Perkin–Elmer SAM-590 system. Total elemental analysis was performed by atomic absorption spectroscopy. Surface acidity tests were performed by the indicator method (11). Indicators alizarin (Fisher) and *o*-nitrophenol (Fisher) were dissolved in nonpolar solvents such as toluene and cyclohexane. The solid samples were added to the indicator solutions, and color changes were observed on the surface of the solid. X-ray photoelectron spectra were recorded with a Cylindrical Mirror Analyzer and a 15-kV Xray source (Physical Electronics Division of Perkin–Elmer). Charge correction of the XPS data was accomplished by assuming that the binding energy of the C 1*s* peak was at 284.6 eV.

RESULTS

Reactor Studies

The optimum yields of C_2 compounds on both Na₄P₂O₇/CaO and Na₄P₂O₇/Gd₂O₃ were obtained by varying reaction conditions such as sodium concentration, temperature, and ratio of methane-to-oxygen gas compositions. The results of these studies are discussed in the following sections. C₂ yields of 18 to 19% were obtained on 0.1Na₄P₂O₇/CaO while 17 to 18% yields were obtained 0.5Na₄P₂O₇/Gd₂O₃, at 1101 K and a methane-to-oxygen ratio of 2. These C₂ yields were comparable to the highest C₂ yields reported in the literature on the other active catalysts (2, 7, 10).

The C₂ yield of 18 to 19% on 0.1 Na₄P₂O₇/ CaO did not vary during the testing period of 26 h. These results are also discussed below.

Variation in catalytic performance with time. The change in catalytic performance during the reaction at 1101 K was examined using CaO, $0.1Na_4P_2O_7/CaO$, and $0.1Na_2$ CO₃/CaO, and the results are shown in Fig. 1. Pure CaO produced a low C₂ yield (the product of the total CH₄ conversion and selectivity for C₂ compounds), and this C₂ yield did not decrease during the 20-h period of testing. There was a substantial increase in the C₂ yield for both $0.1Na_2CO_3/$ CaO and $0.1Na_4P_2O_7/CaO$ compared to that for the pure CaO. The initial C₂ yields

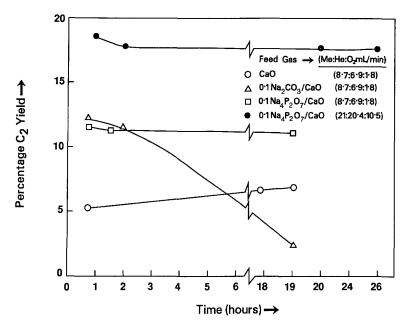


FIG. 1. C₂ yield of catalysts containing CaO as a function of time at 1101 K.

and (12%) for both $0.1 Na_2 CO_3 / CaO$ $0.1Na_4P_2O_7/CaO$ were similar, but over 19 h, there was a drastic decrease in the C_2 yield over 0.1Na₂CO₃/CaO. It is interesting that there was no substantial decrease in the C_2 yield even after 26 h over 0.1Na₄P₂O₇/CaO under both reaction conwith methane-to-oxygen ratios ditions (based on partial pressures) of 2:1 and 5:1 as shown in Fig. 1. The product distribution for C_2H_4 , C_2H_6 , CO_2 , and CO was also not changed during 26 h on 0.1Na₄P₂O₇/CaO.

The results were different for Gd_2O_3 promoted with $Na_4P_2O_7$ as shown in Fig. 2. There was no significant change in C₂ yield for $0.5Na_4P_2O_7/Gd_2O_3$ during 21 h of reaction when the methane-to-oxygen ratio was 5. However, when the methane-to-oxygen ratio was 2 there was about a 13% decrease from the original C₂ yield during the period from 4 to 20 h, but it remained constant after 20 h. However, with Na_2CO_3/Gd_2O_3 , there was a decrease in the C₂ yield of 25% during the period 2 to 23 h, even when the methane-to-oxygen ratio was 5 which was more than that observed with $Na_4P_2O_7/$ Gd_2O_3 . This was consistent with the observation that $Na_4P_2O_7$ contributed to better stability of the CaO-promoted catalyst compared to Na_2CO_3 .

Effect of the sodium concentration. Variation in catalytic performance at 1101 K as a function of Na₄P₂O₇ content on CaO is shown in Fig. 3. The flow rates of methane, oxygen, and helium were 21, 10.5, and 20.4 ml/min, respectively. Under these conditions, the empty reactor at 1101 K produced 5% C_2 yield with 46% selectivity. Both pure CaO and pure Na₄P₂O₇ produced C_2 yields higher than the empty reactor. Addition of Na₄P₂O₇ to CaO produced higher C₂ yields compared with those corresponding to both pure CaO and pure $Na_4P_2O_7$. The maximum C_2 yield was obtained when the $Na_4P_2O_7$ content on CaO was between 0.1 and 0.2 mol. Total conversion of CH₄ and C₂ selectivity also went through a maximum with increasing $Na_4P_2O_7$ content. Pure $Na_4P_2O_7$ produced very low CO₂ and high CO, but the reverse was observed over pure CaO. It is interesting that the addition of $Na_4P_2O_7$ up to 0.2

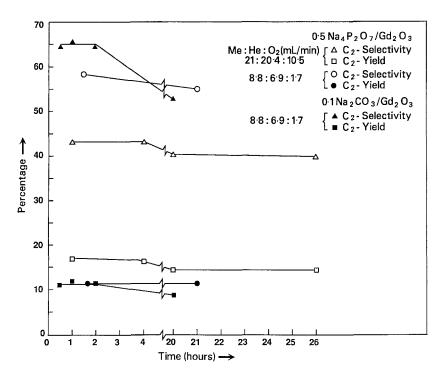


FIG. 2. C₂ yield of catalysts containing Gd₂O₃ as a function of time at 1101 K.

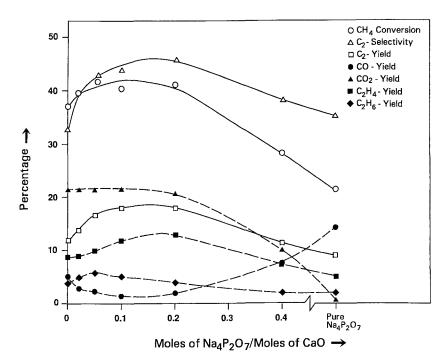


FIG. 3. Effect of sodium concentration on the catalyst $Na_4P_2O_7/CaO$ at 1101 K.

mol to CaO suppressed the formation of both CO and CO₂ but increased the formation of C₂H₄ and C₂H₆ compared to that of both pure CaO and pure Na₄P₂O₇. Thus, there was a unique interaction between Na₄P₂O₇ and CaO which created sites that produced high C₂ yields. However, further increase in Na₄P₂O₇ decreased the C₂ products and CO₂ formation and increased the CO formation which was similar to that of pure Na₄P₂O₇.

The effect of $Na_4P_2O_7$ content on catalytic performance on Gd_2O_3 is shown in Fig. 4. The behavior was different from what was observed with $Na_4P_2O_7/CaO$. Initially (up to 0.1 mol of $Na_4P_2O_7$), there was a decrease in C₂ selectivity, CH₄ total conversion, and C₂ yield with the addition of $Na_4P_2O_7$ to Gd_2O_3 . However, all of these parameters increased with further addition of $Na_4P_2O_7$. The maximum C₂ yield was observed at 0.5 mol of $Na_4P_2O_7$. As a comparison, when 0.1 mol of Na_2CO_3 was added to Gd_2O_3 , the C₂ yield was similar to that of 0.5 mol $Na_4P_2O_7/Gd_2O_3$ even though the

catalytic deactivation was drastic for 0.1 Na_2CO_3/Gd_2O_3 . Thus, a larger amount of $Na_4P_2O_7$ was necessary for Gd_2O_3 to obtain a C_2 yield similar to that obtained with either 0.1 Na_2CO_3/Gd_2O_3 or 0.1 $Na_4P_2O_7/CaO$.

Effect of temperature. Catalytic performance of $0.1Na_4P_2O_7/CaO$ as a function of temperature is shown in Fig. 5. Flow rates of CH₄, O₂, and He were 21, 10.5, and 20.4 ml/min, respectively. Conversion of CH₄, C₂ yield, and C₂ selectivity increased with increasing temperature up to 1101 K. Previous workers (9) observed the maximum catalytic performance with Na₂CO₃/CaO (C₂ yield of 14 to 15%) at a temperature of 993 K.

The effect of temperature on the catalytic performance of $0.5Na_4P_2O_7/Gd_2O_3$ is shown in Fig. 6. The results were similar to those observed over $0.1Na_4P_2O_7/CaO$. Variation of products with temperature was also similar to that of $0.1Na_4P_2O_7/CaO$. The amounts of the products CO_2 , C_2H_4 , and C_2H_6 increased with increasing temperature up to 1101 K.

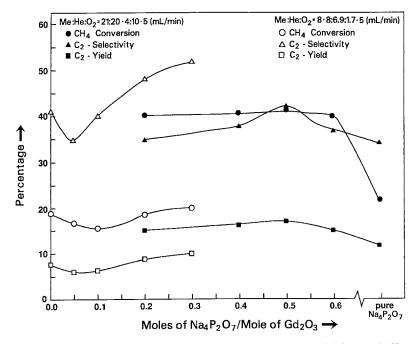


FIG. 4. Effect of sodium concentration on the catalyst $Na_4P_2O_7/Gd_2O_3$ at 1101 K.

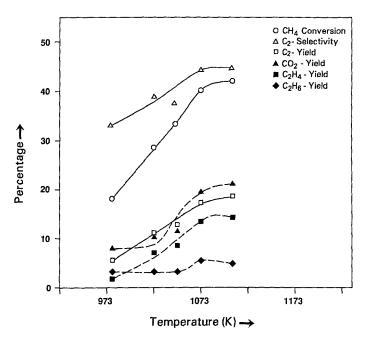


FIG. 5. Effect of temperature on the catalyst $0.1Na_4P_2O_7/CaO$.

Effect of methane-to-oxygen ratio. To optimize the reaction conditions to obtain the maximum C_2 yield over $0.1Na_4P_2O_7/$

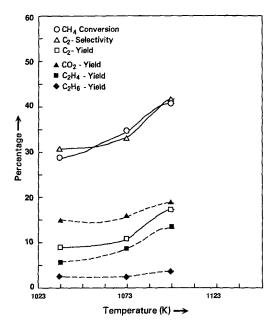


FIG. 6. Effect of temperature on the catalyst $0.1Na_4P_2O_7/Gd_2O_3$.

CaO, experiments were carried out using reactant mixtures with different methane and oxygen gas compositions (based on the partial pressures). The flow rate of helium was 20.4 ml/min, while total flow rate of methane and oxygen was 31.5 ml/min. Under these flow conditions, the methane-tooxygen ratio was varied. The results of these experiments are shown in Fig. 7. With increasing methane-to-oxygen ratio, the overall conversion of methane decreased while the selectivity for C₂ compounds increased. This decrease in the CH₄ conversion was consistent with the drastic decrease in the amount of CO₂ formation with increasing methane-to-oxygen ratio. When the CH_4 -to- O_2 ratio was decreased from 5 to 2 (Fig. 7) at a constant total CH_4 and O_2 pressure, the CO₂ formation, C_2 products, and CO yields increased while the formation of C_2H_6 remained constant. Further decrease in the methane-to-oxygen ratio to 1 resulted in a large increase in CO_2 , a small increase in CO, and a small decrease in C_2 product yields. Thus, the maximum C₂ yield of 18 to 19% was ob-

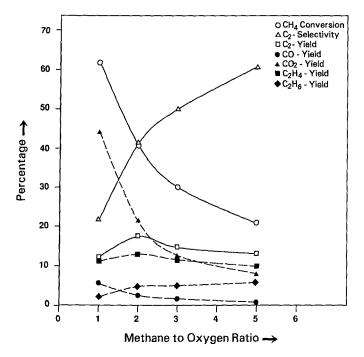


FIG. 7. Effect of methane-to-oxygen ratio on the catalyst $0.1Na_4P_2O_7/CaO$ at 1101 K.

tained over $0.1Na_4P_2O_7/CaO$ when the methane-to-oxygen ratio was 2. The C₂ yield over $0.5Na_4P_2O_7/Gd_2O_3$ was 17 to 18% when the methane-to-oxygen ratio was 2. Oxygen conversion at a methane-to-oxygen ratio of 5 was very high (~95%).

Surface Characterization

Scanning electron microscopy. Scanning electron photomicrographs of the catalysts containing CaO are shown in Fig. 8. A porous structure with uniformly distributed interconnecting network-type arrangement was observed on pure CaO. This arrangement was changed on unreacted 0.1Na₄ P_2O_7/CaO in which more round particles and aggregates were observed. A third type of structure was observed on 0.1Na₄P₂O₇/ CaO after the reaction. The round particles or the aggregates were not observed, but a uniformly distributed structure with sharp edges was more visible on the surface. The surface morphology of unreacted 0.1Na₂ CO₃/CaO (not shown here) was similar to that of 0.1Na₄P₂O₇/CaO before the reaction. However, after the reaction, the $0.1Na_2CO_3/CaO$ surface appeared to have agglomerated round particles and hence the surface morphology was completely different from that of $0.1Na_4P_2O_7/CaO$. Significant changes in surface morphology were not observed on $0.5Na_4P_2O_7/Gd_2O_3$ before or after the reaction.

Auger electron spectroscopy. Auger electron spectroscopic (AES) analysis was performed on five different locations on each sample. AES provides elemental analysis of the surface of the sample up to a depth of about 30 Å. Since the catalytic reactions essentially take place on the surface of the sample, it is useful to know the elemental composition on the surface. The results of the elemental analysis by AES on the surfaces of promoted CaO are shown in Table 1. The "average" indicates the average of the elemental ratios at different positions, while "maximum" and "minimum" indicate the maximum and minimum elemental ratios over those positions, respectively. As shown in Table 1, the distribution

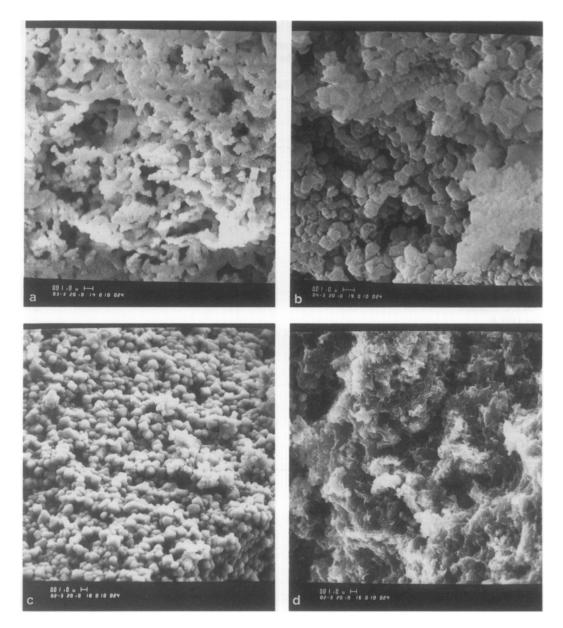


FIG. 8. Scanning electron photomicrographs of CaO containing sodium before and after reaction. (a) CaO, (b) $0.1Na_4P_2O_7/CaO$, (c) $0.1Na_2CO_3/CaO$ after reaction, (d) $0.1Na_4P_2O_7/CaO$ after reaction.

of sodium on the surface of $0.1Na_4P_2O_7/CaO$ was nonuniform. After 26 h of reaction, there was a decrease in the amount of sodium, while there was no significant change in the amount of phosphorus. The decrease in the amount of sodium may have been due to the fact that the sample of

 $0.1Na_4P_2O_7/CaO$ was kept at a high temperature of 1101 K for 26 h during the reaction. To check this, the sample was heated at 1101 K without the reactants for 26 h. As shown in Table 1, there was no significant change in either sodium or phosphorus on the surface after the sample was kept at

Sample	Surface elemental analysis (AES)						
	Na/Ca			P/Ca			
	Average	Maximum	Minimum	Average	Maximum	Minimum	
1. 0.1Na ₄ P ₂ O ₇ /CaO before reaction	0.29	0.51	0.17	0.06	0.09	0.03	
 0.1Na₄P₂O₇/CaO after 26 h reaction at 1101 K 	0.10	0.14	0.04	0.05	0.08	0.02	
 0.1Na₄P₂O₇/CaO 26 h at 1101 K (no reactants) 	0.29	0.40	0.17	0.07	0.13	0.05	
4. 0.1Na ₂ CO ₃ /CaO before reaction	0.10	0.15	0.07	-			
 0.1Na₂CO₃/CaO after 20 h of reaction at 1101 K 	0.04	0.06	0.00	<u> </u>			
	Total elem	ental analysis	(AAS)				
	Na/Ca	·					
1. 0.1Na ₄ P ₂ O ₇ /CaO before reaction	0.12						
2. 0.1Na ₄ P ₂ O ₇ /CaO after 26 h reaction	0.06						
3. 0.1Na ₂ CO ₃ /CaO before reaction	0.08						
4. 0.1Na ₂ CO ₃ /CaO after 20 h reaction	0.07						

Elemental Analysis by Auger Electron Spectroscopy (AES) and Total Elemental Analysis by Atomic Absorption Spectroscopy (AAS) of the Surfaces of the Catalysts Containing CaO before and after Reaction

TABLE 1

1101 K for 26 h without the reactants. Thus, the loss of sodium could have occurred only in the presence of the reactants. The amount of sodium on $0.1Na_4P_2O_7/CaO$ after 4 h of reaction was also found to have decreased (with Na/Ca = 0.14) compared to that on the original sample. This ratio of Na/Ca after 4 h of reaction was similar to that (Na/Ca = 0.10) on the catalyst after 26 h of reaction.

The amount of sodium on the surface of $0.1Na_2CO_3/CaO$ before the reaction was lower than that of $0.1Na_4P_2O_7/CaO$ before the reaction, but was similar to that of $0.1Na_4P_2O_7/CaO$ after 4 and 26 h of reaction. However, there was a considerable loss in the amount of sodium on the surface of $0.1Na_2CO_3/CaO$ after 20 h of reaction,

with certain regions with zero sodium content.

To investigate how the sodium was distributed on the $0.1Na_4P_2O_7/CaO$ before the reaction, scanning Auger mapping analysis was performed (in one of the regions used for AES) on the sample. The photograph of the mapping analysis of sodium on $0.1Na_4P_2O_7/CaO$ is shown in Fig. 9. It was interesting to note that sodium was randomly distributed on the surface.

Results of the AES analysis on promoted Gd_2O_3 are shown in Table 2. The distribution of sodium on the surface was nonuniform on $0.5Na_4P_2O_7/Gd_2O_3$ before the reaction and was similar to the observations made on $0.1Na_4P_2O_7/CaO$ before the reaction as shown in Table 1. There was a small

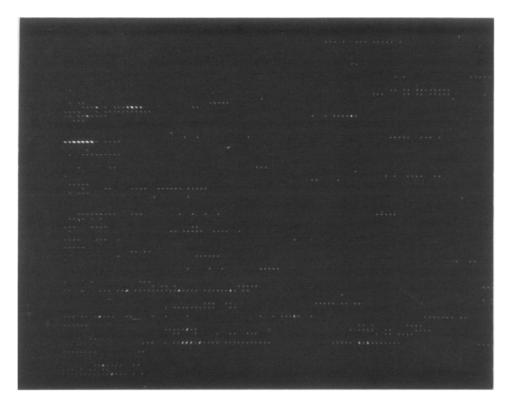


FIG. 9. Scanning Auger mapping analysis of sodium on 0.1Na₄P₂O₇/CaO surface before reaction.

decrease in the amount of sodium on the surface of $0.5Na_4P_2O_7/Gd_2O_3$ after the reaction. However, this decrease in sodium was less than what was observed on $0.1Na_4P_2O_7/CaO$. The distribution of sodium on $0.5Na_4P_2O_7/Gd_2O_3$ after the reaction was more uniform compared to that

TABLE 2

Elemental Analysis by Auger Electron Spectroscopy of the Surfaces of the Catalysts Containing Gd_2O_3 before and after Reaction

Sample	Na/Gd			
	Average	Maximum	Minimum	
 0.5Na₄P₂O₇/Gd₂O₃ before reaction 	0.32	0.59	0.04	
 0.5Na₄P₂O₇/Gd₂O₃ after reaction 	0.26	0.32	0.23	
 0.1Na₂CO₃/Gd₂O₃ before reaction 	0.33	0.39	0.25	
 0.1Na₂CO₃/Gd₂O₃ after reaction 	0.14	0.16	0.12	

on $0.5Na_4P_2O_7/Gd_2O_3$ before the reaction. It was also interesting to note that $0.5Na_2CO_3/Gd_2O_3$ had an amount of sodium on the surface similar to that on $0.1Na_2CO_3/Gd_2O_3$. However, after the reaction, there was a significant decrease in the amount of sodium on $0.1Na_2CO_3/Gd_2O_3$ surface which was consistent with the observation made on $0.1Na_2CO_3/CaO$. The Auger (AES) peak corresponding to phosphorus overlapped with lower binding energy peaks of gado-linium; thus, it was difficult to detect phosphorus peaks on samples containing Gd_2O_3 by AES.

Atomic absorption spectroscopic analysis. Total elemental analyses of sodium and calcium are also shown in Table 1. The results are entirely different from the surface elemental analyses. The ratio of total Na/Ca was not changed after reaction on Na₂CO₃/CaO, while in Na₄P₂O₇/CaO there was a decrease in total Na/Ca after reaction. It is also important to note that the surface Na/Ca ratio is more (about twice) than that in the bulk on the Na₄P₂O₇/CaO before the reaction, indicating that the sodium is distributed mostly near the surface. The total Na/Ca ratio of $0.1Na_4P_2O_7/CaO$ before the reaction was lower than the theoretically expected value of 0.4 (according to the formula). During preparation of the catalyst, all of the sodium may not have deposited on the CaO.

X-ray photoelectron spectroscopic analysis (XPS). The XPS system consisted of a separately pumped (10⁻⁸–10⁻⁷ Torr; 1 Torr = 133.3 Pa) sample preparation chamber which was equipped with a resistively heated sample probe and a leak valve for gas exposures. The preparation chamber was separated from the analyzing chamber by a gate valve. Catalyst samples were heated in the preparation chamber to 1101 K and were exposed to pure oxygen and methane/oxygen mixture (2:1) at 1101 K at a constant pressure for 10 min. Then the gate valve was opened and the sample was transferred to the analyzing chamber for data acquisition at 1101 K. This procedure ensured that there was no rehydroxylation

or any other contamination of the samples due to exposure to the atmosphere during the transfer of the samples from reactor to spectrometer. The experimental uncertainty in the binding energy was ± 0.5 eV. XPS provides analysis of the surfaces of the samples up to a depth of about 50 Å. The binding energy of elements obtained by XPS can generally be used to differentiate the chemical states of the elements on the surface. The XPS spectrum of the O 1s peak of 0.1Na₄P₂O₇/CaO at 1101 K is shown in Fig. 10. Only one oxygen peak was observed at 530.9 eV and this peak was not changed after exposure to both oxygen and methane/oxygen (1:2) mixtures at 2400 Langmuirs (1 Langmuir = exposure to 10^{-6} Torr for 1 s). Similar observations were made with $0.5Na_4P_2O_7/Gd_2O_3$ system. The binding energies of O 1s for the different compounds at 1101 K are shown in Table 3. The binding energy of oxygen on both Na₄P₂O₇/CaO and Na₄P₂O₇/Gd₂O₃ was similar to that of $Na_4P_2O_7$. The oxygen binding energy of Na₄P₂O₇/CaO was different from that of CaO even though a calcium peak was observed on this catalyst. The higher binding energy of oxygen on Na₄P₂O₇/CaO

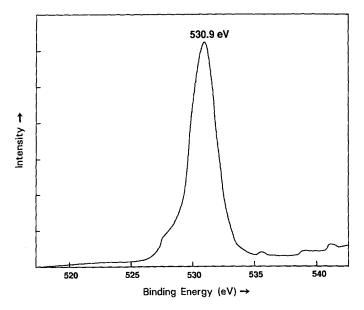


FIG. 10. XPS spectra of O 1s peak on Na₄P₂O₇/CaO.

Binding Energy of Oxygen and Phosphorus on $0.1Na_4P_2O_7/CaO,\ 0.5Na_4P_2O_7/Gd_2O_3,$ and Standard Compounds

Compound	Binding energy (eV)		
	0	Р	
Na ₄ P ₂ O ₇ at 1101 K	531.2	132.8	
0.1Na ₄ P ₂ O ₇ /CaO at 1101 K	531.0	132.8	
0.5Na ₄ P ₂ O ₇ /Gd ₂ O ₃ at 1101 K	531.2	133.3	
CaO at 1101 K	528.5		
Phosphide		128.3-129.0 (12)	
Phosphorus		129.8 (12)	
Na ₂ HPO ₄		133.0 (12)	
Na ₃ PO ₄	530.3	132.3 (14)	
NaPO ₃		134.0 (12)	

indicated that the oxygen on $Na_4P_2O_7/CaO$ was more electron deficient than that of pure CaO. The binding energies of phosphorus were also similar on all three catalysts and comparison with the standards (Table 3) indicated that it did not exist in either the phosphide or the phosphorus state.

For sodium, however, it is difficult to differentiate chemical states based on the binding energy (12, 13). Therefore, Auger parameters (12), which give a better distinction between chemical states for sodium, were calculated. The Auger parameter is defined as the difference in binding energy between the photoelectron and the X-rayinduced Auger peak of sodium. A plot of the Auger parameter plus photon energy versus binding energy of sodium is shown in Fig. 11. It is clear that the chemical state of sodium on Na₄P₂O₇/CaO is similar to those on pure Na₄P₂O₇ and on Na₄P₂O₇/Gd₂O₃.

The C 1s peak of $0.1Na_4P_2O_7/CaO$ is shown in Fig. 12. After the oxygen exposure at 1101 K, a carbon peak corresponding to hydrocarbon was observed. When the sample was exposed to methane/oxygen (2:1) mixture at 1101 K; an additional carbon peak corresponding to carbide was observed. The peak corresponding to carbide could be easily removed by subsequent exposures to oxygen. Thus, this carbide may be a precursor for carbon oxide formation. A carbon peak corresponding to carbonate (288.7 eV) was not observed. The peak at 290.2 eV which was present both before and after CH_4/O_2 exposures could be either bicarbonate or part of the sodium Auger (KLL) series. X-ray diffraction analysis also indicated the absence of Na₂CO₃ phase on the sodium pyrophosphate-containing catalysts before and after reactions.

Surface acidity and surface area. Results of the surface acidity tests are listed in Table 4. The data indicated that all catalysts except Gd₂O₃ had an acidity greater than 7.0 (the p K_a value of o-nitrophenol) while Gd_2O_3 had an acidity close to 7.0. [The definition of acidity (11) used in this discussion is as follows: The acidity of the surface is comparable to the acidity of an aqueous solution which has a pH value close to the pK_a value of an indicator which is present in both acid and base forms in that solution. Thus, the acidity of the surface was discussed in terms of the pK_a of the indicator.] BET nitrogen surface areas The of 0.1Na₄P₂O₇/CaO and 0.1Na₂CO₃/CaO before the reaction were 6.2 and 5.5 m^2/g , respectively. The surface areas measured by krypton adsorption of both these catalysts after 24 h of reaction were 0.7 and 0.5 m^2/g , respectively.

DISCUSSION

Relationship between Catalytic Performance and Elemental Composition of the Surface

It was seen that both the Na_2CO_3 and Na₄P₂O₇ on CaO increased the C₂ yield considerably compared to pure CaO. Under similar experimental conditions, both 0.1Na2CO3/CaO and $0.1Na_4P_2O_7/CaO$ showed similar initial C2 yield, but the deactivation on 0.1Na2CO3/CaO was drastic during 20 h (even below the C₂ yield of pure CaO), while $0.1Na_4P_2O_7/CaO$ produced a stable C₂ yield during 26 h (Fig. 1). It seemed that a very small amount of sodium

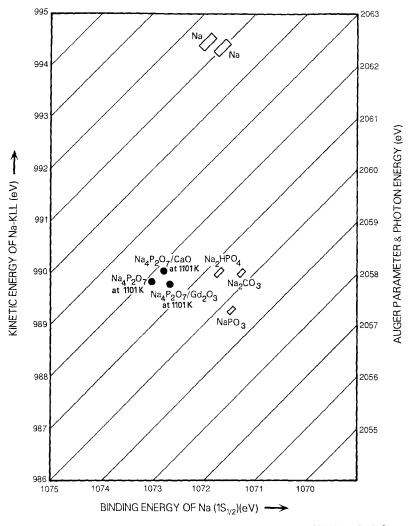


FIG. 11. Auger parameters of sodium on $0.1 Na_4 P_2 O_7/CaO,\,0.5 Na_4 P_2 O_7/Gd_2 O_3$, $Na_4 P_2 O_7$, and standards.

ΤA	BL	Æ	4
----	----	---	---

Results of Surface Acidity T	Cests on the Catalyst
------------------------------	-----------------------

Indicator	Color in the acid form	Color in the base form	pH at color transition	Catalyst	Color on the catalyst	C_2 selecitivity $(Me: O_2 = 5:1)$
1. Alizarin	Yellow	Red	5.5-6.8	CaO	Red	40
				Gd_2O_3	Red	47
				Na ₄ P ₂ O ₇ /CaO	Red	60
				Na ₄ P ₂ O ₇ /CaO	Red	64
2. o-Nitrophenol	Colorless	Yellow	5.0-7.0	CaO	Dark yellow	
•				Gd ₂ O ₃	Light yellow	
				Na ₄ P ₂ O ₇ /CaO	Dark yellow	
				$Na_4P_2O_7/Gd_2O_3$	Dark yellow	

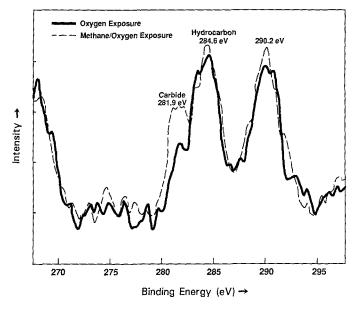


FIG. 12. XPS spectra of C 1s peak on Na₄P₂O₇/CaO.

on oxides produced lower C₂ yields when compared to that of pure oxides [Gd₂O₃ (Fig. 4) and CaO (9)]. This could be the reason for the low C₂ yield on Na₂CO₃/CaO after 20 h. On 0.1Na₂CO₃/CaO, there was a considerable loss in the amount of sodium on the surface (certain areas had zero sodium content) after the reaction, while on $Na_4P_2O_7/CaO$, a reasonable amount of sodium was retained on the surface even after 26 h of reaction. Comparison of Na/Ca ratios obtained by AAS and AES data indicated (Table 1) that the sodium was distributed mainly on the surface of the catalyst containing Na₄P₂O₇. After the reaction, there was no significant change in the total sodium in Na₂CO₃-containing catalysts even though the surface concentration was drastically changed. Thus, phosphorus seemed to have an ability to retain more sodium near the surface of the catalyst. However, in the catalyst containing Na₂CO₃ the loss of sodium from the surface could be due to evaporation and migration of surface sodium to the bulk. The initial Na/Ca ratio on Na₄P₂O₇/CaO was about 0.26; it decreased to 0.14 during the first 3 h of reaction and remained essentially constant for the next 26 h. The C_2 yield also decreased from 19 to 18% during the first 3 h and remained constant for the next 26 h. The ratio of Na/Ca present on the $Na_2CO_3/$ CaO surface before the reaction was about 0.10 which was similar to the Na/Ca ratio on Na₄P₂O₇/CaO during 3 to 26 h of reaction. The presence of phosphorus on $0.1Na_4P_2O_7/CaO$ may have not contributed to an additional C_2 yield over the catalyst since both Na₂CO₃/CaO and Na₄P₂O₇/CaO resulted in similar C_2 yields initially. However, the presence of phosphorus had a significant contribution to the stability of the catalyst. The major contribution of phosphorus appears to be its ability to retain sodium on the surface for a longer period. It was also interesting to note that both Na/Ca and P/Ca ratios were not changed on the surface when $0.1Na_4P_2O_7/CaO$ was heated at 1101 K in an oven for 26 h without reactants. Thus, the initial loss of Na on $0.1Na_4P_2O_7/CaO$ occurred only in the presence of reactants. However, the P/Ca ratio did not change at 1101 K either in the presence or in the absence of the reactants.

Thus, phosphorus on the surface was not consumed during the reaction.

Comparing both C_2 yield data (Fig. 2) and AES data (Table 2), it is again possible to relate the catalytic activity to the amount of sodium present on Gd_2O_3 . Both 0.1Na₂CO₃/Gd₂O₃ and 0.5Na₄P₂O₇/Gd₂O₃ produced a similar initial C_2 yield. The AES analysis showed that both surfaces of 0.5Na₄P₂O₇/Gd₂O₃ and 0.1Na₂CO₃/Gd₂O₃ initially had similar Na/Gd ratios. However, the loss of surface sodium after the reaction was drastic on Na₂CO₃/Gd₂O₃ compared to that on Na₄P₂O₇/Gd₂O₃ which correlated well with the decrease in C_2 yield. These results were consistent with what was observed on the CaO system. Thus, the function of phosphorus may be the stabilization of sodium on the oxide surface. The reason for the initial deactivation of Gd₂O₃ containing Na₄P₂O₇ between 0.05 and 0.1 (mole ratio) was not clear.

Effect of Basicity, Surface Area, and Active Centers on the Catalytic Performance

Previous workers (4) have postulated that it was the basicity of the surface which was responsible for the production of C_2 compounds. There could be a considerable contribution from surface basicity since electron transfer is involved in the reaction. However, it is not clear whether it is possible to relate the production of C₂ compounds completely to the surface basicity. For instance, at room temperature (298 K), pure CaO was more basic than pure Gd₂O₃ as shown in Table 4 but the C_2 selectivity over pure Gd₂O₃ produced slightly higher C_2 yields at 1101 K compard to pure CaO. However, the surface acidity could change when the catalysts were heated to reaction temperatures (1101 K).

Centers of $[Na^+O^-]$ have been identified on the Na_2CO_3/CaO system at 923 K by Lin *et al.* (9), and were postulated to be the active sites for the reaction. It was also stated by the same group of researchers (2) that sodium can be easily substituted on calcium because of the similarity in size of Na⁺ (0.116 nm) (10) and Ca²⁺ (0.106 nm) (15), and hence, Na_2CO_3/CaO was a better catalyst than Na₂CO₃/MgO. At 1101 K, 0.5 $Na_4P_2O_7/Gd_2O_3$ produced C_2 yields similar to that of $0.1Na_4P_2O_7/CaO$, yet Gd^{3+} (0.093) nm) (15) is smaller than Na^+ (0.116 nm). Thus, it is unlikely that there would be substitution of Na⁺ for Gd³⁺. Iwamatsu et al. (10) recently reported that Na^+ -MgO produced high C₂ yields at 1073 K even though Na⁺ is considerably larger than Mg²⁺. Thus, either the centers produced on $0.1 Na_4 P_2 O_7 / CaO$ different were from 0.5Na₄P₂O₇/Gd₂O₃ or both catalysts had similar centers which are not produced by substitution of metal ions with Na⁺. It should also be noted that it was necessary to have 0.5 mol of $Na_4P_2O_7$ on Gd_2O_3 to produce a yield of C₂ hydrocarbons similar to that produced by 0.1 mol Na₄P₂O₇ on CaO. However, XPS analysis showed that oxygen, sodium, and phosphorus were in similar chemical states on $0.5Na_4P_2O_7/$ Gd_2O_3 and $0.1Na_4P_2O_7/CaO$. Thus, it is reasonable to conclude that the active centers produced on 0.5Na₄P₂O₇/Gd₂O₃ are similar to those on 0.1Na₄P₂O₇/CaO which cannot be formed by substitution of Na⁺. Thus, the active centers at 1101 K on these phosphorus-containing catalysts must be different from those of Na₂CO₃-containing catalysts at 993 K.

The increase in C_2 yield resulting from addition of sodium could also be due partly to the decrease in surface area, as observed by other workers (10). However, Lin *et al.* (9) and Iwamatsu *et al.* (10) observed a continuous decrease in surface areas with increasing sodium coverage on Na/CaO. Yet, the C_2 yield on intermediate sodium coverage was higher than that on high sodium coverage.

Therefore, the increase in C_2 yield by addition of sodium pyrophosphate to CaO cannot be fully explained due to surface area effect, as also indicated by Jones *et al.* (7). Drastic decreases in surface areas were observed in both $0.1Na_2CO_3/CaO$ and 0.1Na₄P₂O₇/CaO after 24 h of reaction yet the C₂ yields were significantly different after 24 h on the two catalysts. Thus, the differences in reactivity cannot be fully explained by the surface area effect. The morphological changes associated with the reaction on Na₄P₂O₇/CaO indicated that there was surface restructuring during the reaction.

Reaction Mechanisms

Several different reaction mechanisms (1, 5, 9) have been proposed by previous workers. Some mechanisms involve complete surface reactions (1), while other mechanisms (9) involve surface-initiated gas-phase reactions. Based on the data in the reactor study in the present investigation, some insight into the reaction mechanisms can be deduced.

There was no drastic decrease in C_2 product formation (Fig. 7) associated with the large increase in CO_2 . Thus, this large increase in CO_2 formation with decreasing CH_4 -to- O_2 ratio (from 2 to 1) cannot be easily accounted for by the oxidation of C_2 products formed during the reaction. Thus, there seems to be an independent route for the formation of CO_2 (majority) directly from CH_4 , in addition to the oxidation-ofproducts route. This is consistent with the observations by previous workers (2, 5, 9).

It is more likely that carbon oxide formation could take place on the surface of the catalyst and carbide could be the precursor for this carbon oxide formation as observed by XPS measurements.

Effect of Temperature on the Catalytic Performance

The C₂ yields over both $0.1Na_4P_2O_7/CaO$ and $0.5Na_4P_2O_7/Gd_2O_3$ increased with increasing temperature up to 1101 K (Figs. 5 and 6). The increase in C₂ selectivity and the changes in product distribution with temperature were similar for both catalysts. The effect of temperature on catalytic performance may be due to two reasons. One reason may be the increase in rates of reaction with increasing temperature. For instance, it has been found that the activation energies (5, 6) for the formation of C_2H_6 and C_2H_4 were higher than that for the formation of CO_2 . Thus, the increase in C_2 selectivity with increasing temperature can be attributed to the relative increase by reaction rates. Similar behavior with temperature has been observed by Otsuka *et al.* (5), Ito *et al.* (2), and Lin *et al.* (9).

In addition, it is important to consider the changes in the nature of the surface of the catalyst with temperature. Maximum performance occurs at different temperatures on different catalysts. For instance, C₂ selectivity continuously increased on Sm₂O₃ (5) when the reaction temperature was increased from 850 to 1023 K, and data beyond this temperature were not reported. on both Li2CO3/MgO and However, Na_2CO_3/CaO (2, 9) systems, the optimum temperature was 993 K. The decrease in C₂ selectivity beyond 993 K was attributed to the further oxidation of C_2H_4 and C_2H_6 . However, in the present study on both $0.1Na_4P_2O_7/CaO$ and $0.5Na_4P_2O_7/Gd_2O_3$, C_2 selectivities continued to increase with increasing temperature up to 1101 K. Furthermore, Otsuka et al. (5) reported higher activation energy for the formation of C₂H₆ than for the oxidation of C_2H_6 to CO_2 . Thus, optimum temperature on different catalysts cannot be completely explained by further oxidation of the products. Production of the active centers due to the interaction between Na₄P₂O₇ and the catalyst must also be temperature dependent. If the sodium phase remains as Na₄P₂O₇, there would not be a high catalytic activity since pure $Na_4P_2O_7$ produced the low C_2 yields. In this work, it was observed that there was a considerable decrease in sodium on the surfaces of both Na₂CO₃/CaO and Na₂CO₃/ Gd₂O₃ at 1101 K, while sodium was retained on the surfaces of these two oxides containing Na₄P₂O₇ at 1101 K. Thus, the optimum temperature of the catalyst at which the highest C_2 yield was produced may also depend on the changes in the surface of the catalyst with temperature.

CONCLUSIONS

Both $Na_4P_2O_7/CaO$ and $Na_4P_2O_7/Gd_2O_3$ were found to be active, selective, and stable catalysts for partial oxidation of methane. The C₂ yields obtained over these catalysts ranged from 17 to 19%. Catalytic performance resulted from a unique interaction between the sodium and the oxide surface. The active sites produced on surfaces of both 0.1Na₄P₂O₇/CaO and $0.5Na_4P_2O_7/Gd_2O_3$ increased C_2 product formation while decreasing C₁ product formation compared to pure oxides. Phosphorus on the surface of $Na_4P_2O_7/CaO$ was found to stabilize the sodium on the surface without being consumed during the reaction. The major C_2 product formed on the active catalyst was C_2H_4 . The optimum C_2 yield was obtained at a methane-to-oxygen ratio of 2. Temperature affected catalytic performance significantly. This temperature dependence on C_2 selectivity and C_2 yield may be due to both the differences in activation energies of different reactions and the changes in the surface of the catalysts at different temperatures. Auger electron spectroscopic analysis data on elemental composition of the catalysts correlated well with catalytic performance data. The stability of the catalysts was found to be related to the ability to retain sodium on the surface as observed by AES. Changes in surface morphology during the reaction were found by scanning electron microscopy. This indicated there was restructuring of the surface during the reaction. XPS data indicated that chemical states of oxygen, sodium, and phosphorus on $0.1Na_4P_2O_7/CaO$ were similar to those on

 $0.5Na_4P_2O_7/Gd_2O_3$. Carbide formation was observed on the surface after methane exposures which could be the precursor for carbon oxide formation.

ACKNOWLEDGMENTS

The author thanks Dr. Abol Shamsi for the assistance provided during setup of the initial equipment for flow reactor studies. The author also thanks Dr. Jason Cook and Dr. Steven Miller for writing the program for data acquisition in XPS. Review of the manuscript by Dr. Larry Headley is appreciated. Review of the manuscript and the sincere encouragement provided during study by Dr. Jan Wachter are greatly appreciated.

REFERENCES

- Keller, G. E., and Bhasin, M. M., J. Catal. 73, 9 (1982).
- Ito, T., Wang, J. X., Lin, C., and Lunsford, J. H., J. Amer. Chem. Soc. 107, 5062 (1985).
- Ali Emesh, I. T., and Amemoiya, Y., J. Phys. Chem. 90, 4785 (1986).
- Bytyn, W., and Baerns, M., Appl. Catal. 28, 199 (1986).
- Otsuka, K., Jinno, K., and Morikawa, A., J. Catal. 100, 353 (1986).
- Otsuka, K., and Said, A. A., *Inorg. Chem. Acta* 132, 123 (1987).
- Jones, C. A., Leonard, J. J., and Sofranko, J. A., J. Catal. 103, 311 (1987).
- Sofranko, J. A., Leonard, J. J., and Jones, C. A., J. Catal. 103, 302 (1987).
- Lin, C. H., Wang, J. X., and Lunsford, J. H., J. Catal. 111, 317 (1987).
- Iwamatsu, E., Moriyama, T., Takasaki, N., and Aika, K., J. Catal. 113, 25 (1988).
- Mason, J. G., Siriwardane, R. V., and Wightman, J. P., J. Adhesion 11, 315 (1981).
- Wagner, C. D., "Handbook of X-ray and Ultraviolet Photoelectron Spectroscopy" (D. Briggs, Ed.). Heyden & Son, Philadelphia, 1978.
- 13. Siriwardane, R. V., and Cook, J. M., J. Colloid Interface Sci. 114, 525 (1986).
- 14. Morgan, W. E., Wazer, J. R., and Stec, W. J., J. Amer. Chem. Soc. 95, 751 (1973).
- Cotton, A., and Wilkinson, G., "Advanced Inorganic Chemistry." Wiley–Interscience, 1972.